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Interpretation of FTIR Spectra by Principal
Components—Artificial Neural Networks

Bingping Liu
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Chemistry, Qufu Normal University, Qufu, People’s Republic of China

Yan Li, Lin Zhang, and Junde Wang
Laboratory of Advanced Spectroscopy, Nanjing University of Science &
Technology, Nanjing, People’s Republic of China

Abstract: In order to improve the training speed and increase the predictive ability of
artificial neural networks, principal component analysis (PCA) and partial least
squares (PLS) were introduced to compress the original data. The principal components
(PCs) of FTIR spectroscopic data matrix were obtained by PCA and PLS methods
respectively, which were used as the inputs of neural networks. Results indicated that
improvement was achieved in three aspects when the PCs instead of the original data
were input to the networks. First, iterations were distinctly decreased from 8000 to
less than 10. Second, computation time was shortened from 34.95 s to less than 1 s.
Third, standard error of prediction (%SEP), mean relative error (MRE), and the root
mean square error of prediction (RMSEP) decreased by 35% for the singular value
decomposition—artificial neural network (SVD-ANN) and 80% for the nonlinear
iterative partial least squares—ANN (NIPALS-ANN) or so, which means that the predic-
tive ability was improved significantly. In addition, F-test was introduced to compare the
performance of PCA and PLS for compression of original data, and it was shown that the
latter model was more efficient. The presented methodologies of variable selection
provide a simple and rapid technique for ANN to interpret FTIR spectra accurately
and are advantageous to the widespread use of artificial neural networks.

Keywords: Artificial neural network, FTIR, multicomponent analysis, partial least
squares, principal component analysis, selection of variables

Received 16 April 2005, Accepted 15 May 2006

Address correspondence to Yan Li, Laboratory of Advanced Spectroscopy, Nanjing
University of Science & Technology, Nanjing 210014, People’s Republic of China.
E-mail: yanli@mail.njust.edu.cn

373



02:58 30 January 2011

Downl oaded At:

374 B. Liu et al.
INTRODUCTION

Artificial neural networks are mathematical models of biological neural
systems. Over the past few years, the artificial neural network (ANN)
modeling technique has attracted an increasing interest as a very promising
method in many aspects, such as nonlinear calibration,"! ~>! quantitative
structure—activity relationship,'®”! optimization of experimental conditions,®!
and modeling of kinetic data.””"' However, there must be a lot of training sets
to train the network, which makes the structure of the networks very complex
and causes the predictive ability to be depressed, especially for the spectro-
scopic data. After the measurement was made with spectrometer, hundreds
and thousands of variables were collected from each spectrum. If all the
data are input to the neural network, the matrix of training sets is so large
that the number of iterations is too, much and it’s burdensome for the
microcomputer to finish such complex calculations. The information with
noises or interfering signals is also introduced to the model, which actually
deteriorates the accuracy and/or precision of the neural networks. In other
way, there is a large correlation to some chosen features, which makes it
easy to be overfitted. If only several data at different wavenumbers are
used, the information of the whole spectrum will not be fully included, and
it’s possible to lose part of the features. In these cases, it’s very necessary
to select some representative data to train the network.

The earliest method to select the variables is stepwise regression analysis
(SRA). It chooses the variables based on the output of systems, but the
selected data have relativity, and the results depend on the sequence of
training samples. Thus it’s difficult to find a model with best prediction
ability. In recent years, genetic algorithm (GA), which selects a subset of
variables, has been widely used."' ' Studies have shown that GA
performs equivalently or even better compared with the traditional methods
with less than 30 dimensions.">! For higher dimension problems, however,
the performance seems to degrade.

Instead of selecting a subset of the available features, principal
component analysis (PCA)!"®~'8 and partial least squares (PLS),!"”! which
are linear combinations of all available features, were introduced in this
paper to reduce the dimensionality. To each FTIR spectrum, 82 variables
were obtained from 1272 to 624cm™ ' in 8cm™' intervals. Then the
principal components of the data matrix were extracted by PCA and PLS
respectively, which were used as the inputs of the new networks. After the
original data were processed, it was found that iterations and computation
time were obviously decreased, and the prediction ability of the networks
was significantly improved. In the research, a comparison between the
singular value decomposition—artificial neural network (SVD-ANN) and
the nonlinear iterative partial least squares—ANN (NIPALS-ANN) models
was made. Results indicated that PLS model was better to select the
principal components than PCA model.
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THEORETICAL
PCA and PLS

PCA and PLS are two multivariate full-spectrum calibration techniques that
have received considerable attention. Many researchers have observed that
inclusion of extra principal components or latent variables in the calibration
model can express nonlinear responses.**?!'! Both methods consider the
information of all the available features and then condense them into new
variables that are orthogonal and span the multidimensional space of X,
which is the (n x m) matrix of n calibration spectra measured at m different
wavenumbers. The new variables are linear combinations of the original
data and are calculated in order of importance, so by keeping only the
first few variables, a noise reduction can be achieved, and at the same time,
they express the structure and the character of the old variables as much as
possible.

In PCA model, the principal components (PCs) were obtained by the
singular value decomposition procedure (SVD).

X =Uuwv’ (1)

where U and V are the orthonormal matrices spanning the respective row and
column spaces of the data matrix (X). W is a diagonal matrix whose elements
are the square root of the eigenvalues. The eigenvectors included in U are
named as PCs, which were used as inputs to ANN model (SVD-ANN). For
“unknown” samples, the PCs are computed by the equation below:

-1
Uunknown = Xunknown VW (2)

where X, nxnown 18 the unknown sample’s measured spectrum. Uy,inown 1S the
unknown sample’s vector of new orthogonal variables.

In PLS modeling, nonlinear iterative partial least squares (NIPALS) was
used to calculate PLS model parameters. When calculating the new variables,
both matrix X and Y are used. Here, matrix Y stands for the concentrations
of J components for / samples. The PCs are calculated in order of importance
by maximizing the covariance between Y and linear combinations of
the x-variables. The linear regression equation can be written as

d

X=TP"+F=) 1pl +F 3)
i=1
d

Y=UQ"+E=7) uq] +E 4)

i=1

where T and U are the score matrices of X and Y. P and Q are their loading
matrices. F and E are the matrices of the residual spectra. d is the number
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of PCs, which was determined on the basis of cross-validation method. Then a
linear relationship is established between T and U.

U=TB 5

where B is the matrix of regression vectors. In this model, the score matrix
T is the new input of ANN model (NIPALS-ANN).

ANN Modeling

Three layers back-propagation networks were employed in this study. The
detailed description of its theory has been given in other references. 2!
In our models, the input signals are absorbance values, and the outputs
are the concentrations of the compounds. The number of neurons in
the hidden layer and the number of iterations were determined by the trial-
and-error method. During the learning process, the weights of hidden
and output layers were adjusted by back-propagation algorithm. In this
work, the optimum network was determined by the degree of approxi-
mation,’*” and the training process was terminated when the errors reached
the minimum.

Definition of %SEP, MRE, RMSEP, and F-Test

The formulas of standard error of prediction (%SEP), mean relative error
(MRE), F-test, and the root-mean-square error of prediction (RMSEP) are
calculated by Egs. (6), (7), (8), and (9), respectively. For the calculation of
F-test, a confidence level of 95% was set.

100 [ @& —e)? 1"
%SEP; = — [#} (6)
Cj N
1 N 1o o
MRE; _ 1002 i 145 — el 7)
’ N Cij
%SEP;\*
F =
(%SEP,) ®

RMSEP — ©)

where ¢;; is the measured concentration of the jth component for the ith
sample, c;; is the real concentration, ¢; is the mean concentration of the jth
component, N is the number of predicted samples, %SEP; and %SEP; are
%SEP of the ith model and the jth model.
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MATERIALS AND METHODS
Calibration and Prediction Samples

The database of vapor-phase FTIR spectra used in this paper was from the
U.S. Environmental Protection Agency (EPA) library. The air toxic volatile
organic compounds (VOCs) aniline, benzene, methanol, toluene, and chloro-
form, whose spectra are seriously overlapped with each other, were chosen as
the analytical objects. The FTIR spectra of these five compounds at 50 ppm
are presented in Fig. 1. In this paper, 35 samples and 16 samples were used
to train and test the network, respectively. In the samples, there are not any
other VOCs except these five compounds.

Hardware and Software

The program of ANN was written in MATLAB 6.5. The “newff” function in
the Neural Network Toolbox was used to create the network. The “traingdm”
function, which used a fast back-propagation algorithm with momentum and
an adaptive learning rate, was applied to train the network. The “sim” function
was used to simulate the neural networks in the testing phase. The calculation
of PCA and PLS was performed using “PLS Toolbox.” All the calculations
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Figure 1. The standard single component spectra of the samples at 50 ppm.
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and data processing were carried out in Windows 2000 on a Pentium IV
personal computer with 2.4 GHz of CPU and 256 Mbytes of memory.

RESULTS AND DISCUSSION
Parameters of the Optimum Networks and Computation Time

When the input signals were unprocessed, the number of inputs is equal to the
number of variables obtained from the spectrum. Based on the peak absorbance
of these five compounds, the variables were obtained from 1272 cm™ ! to
624cm 'in 8 cm™! intervals, and the total number is 82. When the original
data were decomposed by SVD, six PCs were obtained. So the SVD-ANN
model had six neurons in the input layer. After the original data were decom-
posed by NIPALS, the number of PCs was determined according to cross-
validation method. In this procedure, the data set is divided into a number of
equal-size segments. The NIPALS model is built on all segments except one
of them and then is used to estimate variables that are left out of the data. The
root mean square error of cross-validation (RMSECV) can be plotted as a
function of the number of latent variable number (in Fig. 2). When the
number of latent variables (named as PCs) increased from 1 to 5, RMSECV
decreased quickly. The reason was that more and more variables with high
information description were added to the model. However, when the number
of PCs added continuously, RMSECV began to increase slowly. This was
caused by the fact that additional latent variables model noise or nonlinearity
were added, which worsened the predictive results. So the number of PCs in
NIPALS-ANN model was set to be 5.

The number of neurons in hidden layer and the iterations were determined
on the basis of the trial-and-error method. These parameters are summarized
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Figure 2. Cross-validation PRESS curve.
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in Table 1. From Table 1, it is seen that the structures of these three neural
networks were different from each other. After the original data were
compressed, the models became much more simple and the number of iter-
ations was obviously decreased from 8000 to 9 for the SVD-ANN model
and to 7 for the NIPALS-ANN model. At the same time, computation time
was significantly decreased from 34.95 to 0.58 and 0.53 s, respectively.

Prediction of Unknown Samples

Three neural networks were used to interpret 18 unknown FTIR spectra. The
predictive results are shown in supporting information (Table 2). It indicated
that the measured concentrations were all close to the real concentrations.
Based on Table 2, standard error of prediction (%SEP), mean relative error
(MRE), root mean square error of prediction (RMSEP), and the relative corre-
lation coefficient (R)™*®! of predicted concentrations versus actual concentrations
were calculated (Table 3). When the inputs were original data, the errors were
higher than the corresponding ones in SVD-ANN and NIPALS-ANN. In ANN
model, the lowest errors of %SEP, MRE, and RMSEP were 2.86, 2.02, and
0.21. However, the highest errors were only 2.99, 2.80, 0.22 for SVD-ANN
model and 0.92, 0.79, 0.07 for NIPALS-ANN model, respectively. The errors
(%SEP, MRE, and RMSEP) decreased by 35% for SVD-ANN and 80% for
NIPALS-ANN or so. Therefore, the errors of neural networks established by
the PCs were decreased obviously, and the predictive ability was significantly
improved. The reason is that there is a large correlation to some features for
the original data, which deteriorates the predictive ability. After the original
data were compressed by PCA and PLS, the vectors were orthogonal, and the
unimportant variables containing noisy information have been eliminated.
After the PCs were input to the neural networks, computation time was
shortened and the predictive ability was significantly improved. Table 4
presents the results of the F-test for these three models. It can be seen that
the values of NIPALS-ANN are higher than those of SVD-ANN, indicating
that there is a significant difference between the values of %SEP, and the
performance of NIPALS-ANN is much better than SVD-ANN. It is due to

Table 1. Parameters of ANN and computation time

Neurons of Neurons of Computation
Model input layer hidden layer Iterations time (s)
ANN 82 12 8000 34.95
SVD-ANN 6 5 9 0.58
NIPALS-ANN 5 5 7 0.53

ANN, artificial neural network; SVD, singular value decomposition;
NIPALS, nonlinear iterative partial least squares.
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Table 2. Prediction results of 18 unknown samples

Compounds (ppm)

08¢

Aniline Benzene Methanol Toluene Chloroform
No. Crca] Cmcas 1 CmcasZ Cmca53 Crca] Cmcas 1 Cmcasz Cmcas3 Crcal Cmcasl CmcasZ Cmcas3 Crcal Cmca< 1 CmcasZ Cmcas3 Crcz\l Cmcas 1 CmcasZ CmcasB
1 620 657 652 631 950 942 936 953 580 558 5.6l 569 850 837 825 844 800 776 797 793
2 750 778 7.67 7.58 850 9.11 832 852 920 924 916 911 800 798 7.82 795 750 751 756 745
3 650 652 657 650 600 660 58 600 6.00 610 58 600 750 691 727 750 9.00 894 9.00 9.00
4 850 821 853 851 7.50 7.00 7.31 750 8.00 807 801 799 900 89 885 9.00 550 548 559 549
5 600 591 608 600 580 563 560 580 650 639 655 650 700 733 687 700 7.00 7.00 7.12 7.00
6 580 583 593 591 920 865 901 923 760 722 760 749 850 805 834 844 780 733 788 7173
7 9.00 888 919 896 6.00 539 583 599 940 920 935 944 920 9.09 9.01 922 800 852 805 8.02
8§ 780 777 813 783 750 736 736 751 680 659 660 677 820 808 794 819 7.00 687 696 698
9 620 6.03 6.22 6.19 520 535 5.03 520 7.60 7.55 7.51 761 680 680 6.40 6.80 840 8.55 8.43 8.40
10 8.80 9.10 897 887 820 834 802 822 560 520 557 552 580 554 563 576 650 632 656 645
11 560 584 592 574 940 885 926 944 820 798 801 806 740 7.66 714 733 640 643 636 631
12 520 496 526 529 780 820 759 782 620 6.61 629 6.11 660 7.09 649 655 750 7.66 7.64 7.44
13 720 7.17 716 723 680 6.74 6.65 681 850 866 837 847 760 767 738 759 800 8.09 8.00 7.98
14 560 6.02 595 566 7.00 7.3 687 7.02 950 9.14 928 944 740 773 713 737 550 578 545 546
15 670 6.76 6.79 6.75 820 839 8.00 821 6.00 5.88 6.05 595 8.60 8.56 8.47 857 620 6.11 6.32 6.17
16 7.10 7.17 726 712 650 630 640 651 720 692 687 7.8 690 687 657 689 730 725 7.8 7.29
17 850 875 8.61 851 5.80 5091 560 580 840 855 843 839 560 563 546 559 8.10 808 820 8.09
18 9.00 877 923 906 940 9.5 924 942 540 509 531 534 930 9.06 910 927 670 656 673 6.66

Creals Cimeasts Cmeas2> and Cppeass stand for real concentrations and measured concentrations by ANN, SVD-ANN, and NIPALS-ANN, respectively.

‘e Iy g
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Table 3. Statistical parameters calculated for the prediction using ANN, SVD-ANN, and PLS-ANN models

%SEP RMSEP MRE R
SVD- NIPALS- SVD- NIPALS- SVD-  NIPALS- SVD- NIPALS-

Compounds ~ ANN ANN ANN ANN ANN ANN ANN ANN ANN ANN ANN ANN

Aniline 3.07 2.66 0.92 0.22 0.19 0.07 2.64 2.34 0.79 0.9639  0.9900 0.9985
Benzene 4.90 2.32 0.24 0.36 0.17 0.02 4.10 232 0.17 09132 0.9995 1.0000
Methanol 3.35 1.90 0.92 0.24 0.14 0.07 3.05 1.51 0.74 0.9685  0.9915 0.9985
Toluene 3.46 2.99 0.46 0.26 0.22 0.04 2.64 2.80 0.35 0.9246  0.9941 0.9993
Chloroform 2.86 1.05 0.59 0.21 0.08 0.04 2.02 0.93 0.47 0.9439  0.9937 0.9990

ANN, artificial neural network; SVD, singular value decomposition; NIPALS, nonlinear iterative partial least squares.
%SEP, standard error of prediction; RMSEP, root mean square error of prediction; MRE, mean relative error; R, relative correlation coefficient.

81123dS YLLA Jo uonejadinuy
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Table 4. Comparison of different ANN models
using the F-test

Compounds SVD-ANN NIPALS-ANN

Aniline 1.33 11.14
Benzene 4.46 416.84
Methanol 3.11 13.26
Toluene 1.34 56.58
Chloroform 7.42 23.50

ANN, artificial neural network; SVD, singular
value decomposition; NIPALS, nonlinear
iterative partial least squares.

the fact that PCA can compress thousands of spectral data into several scores
and describe the character of spectra, but the compression does not concern the
relationship between the input variables and target outputs. Compared with
PCA, PLS considers the influence of the target outputs and the PCs obtained
can express the relationship between input variables and output variables
more accurately. Therefore, the predictive ability of NIPALS-ANN is better
than SVD-ANN model, which could also be seen from the plot of predicted
concentrations versus actual concentrations in supporting information
(Fig. 3). Figures 3a, 3b, and 3c were derived from ANN, SVD-ANN, and
NIPALS-ANN models, respectively. The data in Fig. 3b scattered more
seriously than those in Fig. 3¢, which indicated that the dispersion between
measured concentrations and real ones was larger and the predictive ability
was worse in Fig. 3b. Thus, we proposed that PLS used to select the PCs is
more efficient than PCA model. However, PCA model is simpler and is easy
for programming. If it is not rigorous for the precision of results, researchers
can choose PCA to compress the data. Otherwise, we can choose PLS model.

CONCLUSIONS

In order to improve the training speed and the accuracy obtained from artificial
neural networks, it was necessary to compress the input data into orthogonal
variables. In this study, methods to select variables from FTIR spectroscopic
data have been examined. The principal components of 82 FTIR spectroscopic
data matrix were extracted by PCA and PLS respectively, which were used as
the inputs of neural networks. It was found that when the PCs were input to
neural networks, iterations were decreased significantly from 8000 to less
than 10, computation time was shortened from 34.95 s to less than 1 s and
the errors (%SEP, MRE, and RMSEP) decreased by 35% for SVD-ANN and
80% for NIPALS-ANN or so. The results obtained in this study are sufficient
to justify that PCA and PLS are good methods to reduce the noise and the
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Figure 3. Concentrations of benzene predicted by (a) ANN, (b) SVD-ANN, and
(c) NIPALS-ANN against the real concentrations.

dimensions of FTIR spectroscopic data. In addition, the comparison of the
values of F-test indicates that PLS is much better than PCA in compressing
the data. The presented methodology of variable selection provides a simple
but rapid technique for ANN to interpret FTIR spectra accurately, and also
urges that artificial neural networks be used widely in analytical chemistry.

In this work, the samples in the validation sets were the same as the
training sets. However, when the samples in the validation sets were not
included in the training steps, the concentrations of the unknown samples
cound not been predicted. In order to solve this problem, further research is
being done by our group.
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