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Abstract: In order to improve the training speed and increase the predictive ability of

artificial neural networks, principal component analysis (PCA) and partial least

squares (PLS) were introduced to compress the original data. The principal components

(PCs) of FTIR spectroscopic data matrix were obtained by PCA and PLS methods

respectively, which were used as the inputs of neural networks. Results indicated that

improvement was achieved in three aspects when the PCs instead of the original data

were input to the networks. First, iterations were distinctly decreased from 8000 to

less than 10. Second, computation time was shortened from 34.95 s to less than 1 s.

Third, standard error of prediction (%SEP), mean relative error (MRE), and the root

mean square error of prediction (RMSEP) decreased by 35% for the singular value

decomposition–artificial neural network (SVD-ANN) and 80% for the nonlinear

iterative partial least squares–ANN (NIPALS-ANN) or so, which means that the predic-

tive ability was improved significantly. In addition, F-test was introduced to compare the

performance of PCA and PLS for compression of original data, and it was shown that the

latter model was more efficient. The presented methodologies of variable selection

provide a simple and rapid technique for ANN to interpret FTIR spectra accurately

and are advantageous to the widespread use of artificial neural networks.
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INTRODUCTION

Artificial neural networks are mathematical models of biological neural

systems. Over the past few years, the artificial neural network (ANN)

modeling technique has attracted an increasing interest as a very promising

method in many aspects, such as nonlinear calibration,[1 – 5] quantitative

structure–activity relationship,[6,7] optimization of experimental conditions,[8]

and modeling of kinetic data.[9,10] However, there must be a lot of training sets

to train the network, which makes the structure of the networks very complex

and causes the predictive ability to be depressed, especially for the spectro-

scopic data. After the measurement was made with spectrometer, hundreds

and thousands of variables were collected from each spectrum. If all the

data are input to the neural network, the matrix of training sets is so large

that the number of iterations is too, much and it’s burdensome for the

microcomputer to finish such complex calculations. The information with

noises or interfering signals is also introduced to the model, which actually

deteriorates the accuracy and/or precision of the neural networks. In other

way, there is a large correlation to some chosen features, which makes it

easy to be overfitted. If only several data at different wavenumbers are

used, the information of the whole spectrum will not be fully included, and

it’s possible to lose part of the features. In these cases, it’s very necessary

to select some representative data to train the network.

The earliest method to select the variables is stepwise regression analysis

(SRA). It chooses the variables based on the output of systems, but the

selected data have relativity, and the results depend on the sequence of

training samples. Thus it’s difficult to find a model with best prediction

ability. In recent years, genetic algorithm (GA), which selects a subset of

variables, has been widely used.[11 – 14] Studies have shown that GA

performs equivalently or even better compared with the traditional methods

with less than 30 dimensions.[15] For higher dimension problems, however,

the performance seems to degrade.

Instead of selecting a subset of the available features, principal

component analysis (PCA)[16 – 18] and partial least squares (PLS),[19] which

are linear combinations of all available features, were introduced in this

paper to reduce the dimensionality. To each FTIR spectrum, 82 variables

were obtained from 1272 to 624 cm21 in 8 cm21 intervals. Then the

principal components of the data matrix were extracted by PCA and PLS

respectively, which were used as the inputs of the new networks. After the

original data were processed, it was found that iterations and computation

time were obviously decreased, and the prediction ability of the networks

was significantly improved. In the research, a comparison between the

singular value decomposition–artificial neural network (SVD-ANN) and

the nonlinear iterative partial least squares–ANN (NIPALS-ANN) models

was made. Results indicated that PLS model was better to select the

principal components than PCA model.
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THEORETICAL

PCA and PLS

PCA and PLS are two multivariate full-spectrum calibration techniques that

have received considerable attention. Many researchers have observed that

inclusion of extra principal components or latent variables in the calibration

model can express nonlinear responses.[20,21] Both methods consider the

information of all the available features and then condense them into new

variables that are orthogonal and span the multidimensional space of X,

which is the (n � m) matrix of n calibration spectra measured at m different

wavenumbers. The new variables are linear combinations of the original

data and are calculated in order of importance, so by keeping only the

first few variables, a noise reduction can be achieved, and at the same time,

they express the structure and the character of the old variables as much as

possible.

In PCA model, the principal components (PCs) were obtained by the

singular value decomposition procedure (SVD).

X ¼ UWVT ð1Þ

where U and V are the orthonormal matrices spanning the respective row and

column spaces of the data matrix (X ). W is a diagonal matrix whose elements

are the square root of the eigenvalues. The eigenvectors included in U are

named as PCs, which were used as inputs to ANN model (SVD-ANN). For

“unknown” samples, the PCs are computed by the equation below:

Uunknown ¼ XunknownVW�1 ð2Þ

where Xunknown is the unknown sample’s measured spectrum. Uunknown is the

unknown sample’s vector of new orthogonal variables.

In PLS modeling, nonlinear iterative partial least squares (NIPALS) was

used to calculate PLS model parameters. When calculating the new variables,

both matrix X and Y are used. Here, matrix Y stands for the concentrations

of J components for I samples. The PCs are calculated in order of importance

by maximizing the covariance between Y and linear combinations of

the x-variables. The linear regression equation can be written as

X ¼ TPT þ F ¼
Xd

i¼1

tip
T
i þ F ð3Þ

Y ¼ UQT þ E ¼
Xd

i¼1

uiq
T
i þ E ð4Þ

where T and U are the score matrices of X and Y. P and Q are their loading

matrices. F and E are the matrices of the residual spectra. d is the number
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of PCs, which was determined on the basis of cross-validation method. Then a

linear relationship is established between T and U.

U ¼ TB ð5Þ

where B is the matrix of regression vectors. In this model, the score matrix

T is the new input of ANN model (NIPALS-ANN).

ANN Modeling

Three layers back-propagation networks were employed in this study. The

detailed description of its theory has been given in other references.[22 – 26]

In our models, the input signals are absorbance values, and the outputs

are the concentrations of the compounds. The number of neurons in

the hidden layer and the number of iterations were determined by the trial-

and-error method. During the learning process, the weights of hidden

and output layers were adjusted by back-propagation algorithm. In this

work, the optimum network was determined by the degree of approxi-

mation,[27] and the training process was terminated when the errors reached

the minimum.

Definition of %SEP, MRE, RMSEP, and F-Test

The formulas of standard error of prediction (%SEP), mean relative error

(MRE), F-test, and the root-mean-square error of prediction (RMSEP) are

calculated by Eqs. (6), (7), (8), and (9), respectively. For the calculation of

F-test, a confidence level of 95% was set.

%SEP j ¼
100

�c j

PN
i¼1ðĉij � cijÞ

2

N

" #1=2

ð6Þ

MRE j ¼
100

N

PN
i¼1 jĉij � cijj

cij

ð7Þ

F ¼
%SEPi

%SEP j

� �2

ð8Þ

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðĉij � cijÞ

2

N

s
ð9Þ

where ĉij is the measured concentration of the jth component for the ith

sample, cij is the real concentration, ĉj is the mean concentration of the jth

component, N is the number of predicted samples, %SEPi and %SEPj are

%SEP of the ith model and the jth model.
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MATERIALS AND METHODS

Calibration and Prediction Samples

The database of vapor-phase FTIR spectra used in this paper was from the

U.S. Environmental Protection Agency (EPA) library. The air toxic volatile

organic compounds (VOCs) aniline, benzene, methanol, toluene, and chloro-

form, whose spectra are seriously overlapped with each other, were chosen as

the analytical objects. The FTIR spectra of these five compounds at 50 ppm

are presented in Fig. 1. In this paper, 35 samples and 16 samples were used

to train and test the network, respectively. In the samples, there are not any

other VOCs except these five compounds.

Hardware and Software

The program of ANN was written in MATLAB 6.5. The “newff” function in

the Neural Network Toolbox was used to create the network. The “traingdm”

function, which used a fast back-propagation algorithm with momentum and

an adaptive learning rate, was applied to train the network. The “sim” function

was used to simulate the neural networks in the testing phase. The calculation

of PCA and PLS was performed using “PLS Toolbox.” All the calculations

Figure 1. The standard single component spectra of the samples at 50 ppm.
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and data processing were carried out in Windows 2000 on a Pentium IV

personal computer with 2.4 GHz of CPU and 256 Mbytes of memory.

RESULTS AND DISCUSSION

Parameters of the Optimum Networks and Computation Time

When the input signals were unprocessed, the number of inputs is equal to the

number of variables obtained from the spectrum. Based on the peak absorbance

of these five compounds, the variables were obtained from 1272 cm21 to

624 cm21 in 8 cm21 intervals, and the total number is 82. When the original

data were decomposed by SVD, six PCs were obtained. So the SVD-ANN

model had six neurons in the input layer. After the original data were decom-

posed by NIPALS, the number of PCs was determined according to cross-

validation method. In this procedure, the data set is divided into a number of

equal-size segments. The NIPALS model is built on all segments except one

of them and then is used to estimate variables that are left out of the data. The

root mean square error of cross-validation (RMSECV) can be plotted as a

function of the number of latent variable number (in Fig. 2). When the

number of latent variables (named as PCs) increased from 1 to 5, RMSECV

decreased quickly. The reason was that more and more variables with high

information description were added to the model. However, when the number

of PCs added continuously, RMSECV began to increase slowly. This was

caused by the fact that additional latent variables model noise or nonlinearity

were added, which worsened the predictive results. So the number of PCs in

NIPALS-ANN model was set to be 5.

The number of neurons in hidden layer and the iterations were determined

on the basis of the trial-and-error method. These parameters are summarized

Figure 2. Cross-validation PRESS curve.
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in Table 1. From Table 1, it is seen that the structures of these three neural

networks were different from each other. After the original data were

compressed, the models became much more simple and the number of iter-

ations was obviously decreased from 8000 to 9 for the SVD-ANN model

and to 7 for the NIPALS-ANN model. At the same time, computation time

was significantly decreased from 34.95 to 0.58 and 0.53 s, respectively.

Prediction of Unknown Samples

Three neural networks were used to interpret 18 unknown FTIR spectra. The

predictive results are shown in supporting information (Table 2). It indicated

that the measured concentrations were all close to the real concentrations.

Based on Table 2, standard error of prediction (%SEP), mean relative error

(MRE), root mean square error of prediction (RMSEP), and the relative corre-

lation coefficient (R)[28] of predicted concentrations versus actual concentrations

were calculated (Table 3). When the inputs were original data, the errors were

higher than the corresponding ones in SVD-ANN and NIPALS-ANN. In ANN

model, the lowest errors of %SEP, MRE, and RMSEP were 2.86, 2.02, and

0.21. However, the highest errors were only 2.99, 2.80, 0.22 for SVD-ANN

model and 0.92, 0.79, 0.07 for NIPALS-ANN model, respectively. The errors

(%SEP, MRE, and RMSEP) decreased by 35% for SVD-ANN and 80% for

NIPALS-ANN or so. Therefore, the errors of neural networks established by

the PCs were decreased obviously, and the predictive ability was significantly

improved. The reason is that there is a large correlation to some features for

the original data, which deteriorates the predictive ability. After the original

data were compressed by PCA and PLS, the vectors were orthogonal, and the

unimportant variables containing noisy information have been eliminated.

After the PCs were input to the neural networks, computation time was

shortened and the predictive ability was significantly improved. Table 4

presents the results of the F-test for these three models. It can be seen that

the values of NIPALS-ANN are higher than those of SVD-ANN, indicating

that there is a significant difference between the values of %SEP, and the

performance of NIPALS-ANN is much better than SVD-ANN. It is due to

Table 1. Parameters of ANN and computation time

Model

Neurons of

input layer

Neurons of

hidden layer Iterations

Computation

time (s)

ANN 82 12 8000 34.95

SVD-ANN 6 5 9 0.58

NIPALS-ANN 5 5 7 0.53

ANN, artificial neural network; SVD, singular value decomposition;

NIPALS, nonlinear iterative partial least squares.
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Table 2. Prediction results of 18 unknown samples

No.

Compounds (ppm)

Aniline Benzene Methanol Toluene Chloroform

Creal Cmeas1 Cmeas2 Cmeas3 Creal Cmeas1 Cmeas2 Cmeas3 Creal Cmeas1 Cmeas2 Cmeas3 Creal Cmeas1 Cmeas2 Cmeas3 Creal Cmeas1 Cmeas2 Cmeas3

1 6.20 6.57 6.52 6.31 9.50 9.42 9.36 9.53 5.80 5.58 5.61 5.69 8.50 8.37 8.25 8.44 8.00 7.76 7.97 7.93

2 7.50 7.78 7.67 7.58 8.50 9.11 8.32 8.52 9.20 9.24 9.16 9.11 8.00 7.98 7.82 7.95 7.50 7.51 7.56 7.45

3 6.50 6.52 6.57 6.50 6.00 6.60 5.85 6.00 6.00 6.10 5.86 6.00 7.50 6.91 7.27 7.50 9.00 8.94 9.00 9.00

4 8.50 8.21 8.53 8.51 7.50 7.00 7.31 7.50 8.00 8.07 8.01 7.99 9.00 8.96 8.85 9.00 5.50 5.48 5.59 5.49

5 6.00 5.91 6.08 6.00 5.80 5.63 5.60 5.80 6.50 6.39 6.55 6.50 7.00 7.33 6.87 7.00 7.00 7.00 7.12 7.00

6 5.80 5.83 5.93 5.91 9.20 8.65 9.01 9.23 7.60 7.22 7.60 7.49 8.50 8.05 8.34 8.44 7.80 7.33 7.88 7.73

7 9.00 8.88 9.19 8.96 6.00 5.39 5.83 5.99 9.40 9.20 9.35 9.44 9.20 9.09 9.01 9.22 8.00 8.52 8.05 8.02

8 7.80 7.77 8.13 7.83 7.50 7.36 7.36 7.51 6.80 6.59 6.60 6.77 8.20 8.08 7.94 8.19 7.00 6.87 6.96 6.98

9 6.20 6.03 6.22 6.19 5.20 5.35 5.03 5.20 7.60 7.55 7.51 7.61 6.80 6.80 6.40 6.80 8.40 8.55 8.43 8.40

10 8.80 9.10 8.97 8.87 8.20 8.34 8.02 8.22 5.60 5.20 5.57 5.52 5.80 5.54 5.63 5.76 6.50 6.32 6.56 6.45

11 5.60 5.84 5.92 5.74 9.40 8.85 9.26 9.44 8.20 7.98 8.01 8.06 7.40 7.66 7.14 7.33 6.40 6.43 6.36 6.31

12 5.20 4.96 5.26 5.29 7.80 8.20 7.59 7.82 6.20 6.61 6.29 6.11 6.60 7.09 6.49 6.55 7.50 7.66 7.64 7.44

13 7.20 7.17 7.16 7.23 6.80 6.74 6.65 6.81 8.50 8.66 8.37 8.47 7.60 7.67 7.38 7.59 8.00 8.09 8.00 7.98

14 5.60 6.02 5.95 5.66 7.00 7.13 6.87 7.02 9.50 9.14 9.28 9.44 7.40 7.73 7.13 7.37 5.50 5.78 5.45 5.46

15 6.70 6.76 6.79 6.75 8.20 8.39 8.00 8.21 6.00 5.88 6.05 5.95 8.60 8.56 8.47 8.57 6.20 6.11 6.32 6.17

16 7.10 7.17 7.26 7.12 6.50 6.30 6.40 6.51 7.20 6.92 6.87 7.18 6.90 6.87 6.57 6.89 7.30 7.25 7.18 7.29

17 8.50 8.75 8.61 8.51 5.80 5.91 5.60 5.80 8.40 8.55 8.43 8.39 5.60 5.63 5.46 5.59 8.10 8.08 8.20 8.09

18 9.00 8.77 9.23 9.06 9.40 9.15 9.24 9.42 5.40 5.09 5.31 5.34 9.30 9.06 9.10 9.27 6.70 6.56 6.73 6.66

Creal, Cmeas1, Cmeas2, and Cmeas3 stand for real concentrations and measured concentrations by ANN, SVD-ANN, and NIPALS-ANN, respectively.
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Table 3. Statistical parameters calculated for the prediction using ANN, SVD-ANN, and PLS-ANN models

Compounds

%SEP RMSEP MRE R

ANN

SVD-

ANN

NIPALS-

ANN ANN

SVD-

ANN

NIPALS-

ANN ANN

SVD-

ANN

NIPALS-

ANN ANN

SVD-

ANN

NIPALS-

ANN

Aniline 3.07 2.66 0.92 0.22 0.19 0.07 2.64 2.34 0.79 0.9639 0.9900 0.9985

Benzene 4.90 2.32 0.24 0.36 0.17 0.02 4.10 2.32 0.17 0.9132 0.9995 1.0000

Methanol 3.35 1.90 0.92 0.24 0.14 0.07 3.05 1.51 0.74 0.9685 0.9915 0.9985

Toluene 3.46 2.99 0.46 0.26 0.22 0.04 2.64 2.80 0.35 0.9246 0.9941 0.9993

Chloroform 2.86 1.05 0.59 0.21 0.08 0.04 2.02 0.93 0.47 0.9439 0.9937 0.9990

ANN, artificial neural network; SVD, singular value decomposition; NIPALS, nonlinear iterative partial least squares.

%SEP, standard error of prediction; RMSEP, root mean square error of prediction; MRE, mean relative error; R, relative correlation coefficient.
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the fact that PCA can compress thousands of spectral data into several scores

and describe the character of spectra, but the compression does not concern the

relationship between the input variables and target outputs. Compared with

PCA, PLS considers the influence of the target outputs and the PCs obtained

can express the relationship between input variables and output variables

more accurately. Therefore, the predictive ability of NIPALS-ANN is better

than SVD-ANN model, which could also be seen from the plot of predicted

concentrations versus actual concentrations in supporting information

(Fig. 3). Figures 3a, 3b, and 3c were derived from ANN, SVD-ANN, and

NIPALS-ANN models, respectively. The data in Fig. 3b scattered more

seriously than those in Fig. 3c, which indicated that the dispersion between

measured concentrations and real ones was larger and the predictive ability

was worse in Fig. 3b. Thus, we proposed that PLS used to select the PCs is

more efficient than PCA model. However, PCA model is simpler and is easy

for programming. If it is not rigorous for the precision of results, researchers

can choose PCA to compress the data. Otherwise, we can choose PLS model.

CONCLUSIONS

In order to improve the training speed and the accuracy obtained from artificial

neural networks, it was necessary to compress the input data into orthogonal

variables. In this study, methods to select variables from FTIR spectroscopic

data have been examined. The principal components of 82 FTIR spectroscopic

data matrix were extracted by PCA and PLS respectively, which were used as

the inputs of neural networks. It was found that when the PCs were input to

neural networks, iterations were decreased significantly from 8000 to less

than 10, computation time was shortened from 34.95 s to less than 1 s and

the errors (%SEP, MRE, and RMSEP) decreased by 35% for SVD-ANN and

80% for NIPALS-ANN or so. The results obtained in this study are sufficient

to justify that PCA and PLS are good methods to reduce the noise and the

Table 4. Comparison of different ANN models

using the F-test

Compounds SVD-ANN NIPALS-ANN

Aniline 1.33 11.14

Benzene 4.46 416.84

Methanol 3.11 13.26

Toluene 1.34 56.58

Chloroform 7.42 23.50

ANN, artificial neural network; SVD, singular

value decomposition; NIPALS, nonlinear

iterative partial least squares.
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dimensions of FTIR spectroscopic data. In addition, the comparison of the

values of F-test indicates that PLS is much better than PCA in compressing

the data. The presented methodology of variable selection provides a simple

but rapid technique for ANN to interpret FTIR spectra accurately, and also

urges that artificial neural networks be used widely in analytical chemistry.

In this work, the samples in the validation sets were the same as the

training sets. However, when the samples in the validation sets were not

included in the training steps, the concentrations of the unknown samples

cound not been predicted. In order to solve this problem, further research is

being done by our group.
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Figure 3. Concentrations of benzene predicted by (a) ANN, (b) SVD-ANN, and

(c) NIPALS-ANN against the real concentrations.
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